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Supplemental Material for
Evaluating ‘Graphical Perception’ with CNNs

Daniel Haehn, James Tompkin, and Hanspeter Pfister

1 ADDITIONAL EXPERIMENTS

1.1 Anti-aliasing
One way to increase the fidelity of the information given to the network
for angled or curved lines is to anti-alias the line drawing. This provides
grayscale intensity values to smooth out the jagged line edges and
may be more suitable to networks trained on natural images (such as
VGG19 * and Xception *, with ImageNet weights).

We conduct an experiment to measure continuous pie chart an-
gles from stimuli with anti-aliased (AA) lines (Figure 1). There is
a slight increase in performance for the AA case for VGG19 *, and
an even slighter increase for Xception *. However, overall, adding
anti-aliasing to the line generation was not statistically significant to
the tested CNNs when comparing the performance across all networks
(F(1,30) = 0.341, p > 0.5). This is not surprising since smoothing
only changes very little information at the resolution of our stimuli.
Smooth edges might add more value on higher-resolution stimuli.

1.2 Noise
For all our experiments, we add subtle 5% noise to every pixel to en-
hance variability. We did not observe a significant effect on regression
performance when comparing the Weber-Fechner’s law experiment
with and without noise, averaged over 4 runs (Figure 2). However, the
variability of LeNet increased with the additional complexity.

2 COMPARISONS TO CLEVELAND AND MCGILL’S STIMULI

We visually compare our stimuli to those of Cleveland and McGill [1],
and explain our choices for any differences.

2.1 Resolution Differences
Cleveland and McGill’s stimuli were created on 8.5×11 inch paper
and presented to participants in a binder. While it is unclear from their
paper how the stimuli were created (e.g., printed from a digital file, or
drawn with pen), it is safe to assume that there is a resolution difference
from our stimuli. Our stimuli are 100×100 digital images, with their
resolution chosen for computational reasons: We needed to train more
than 2,500 models and, at this resolution, our most complex Xception
model took 6 hours to train with 60,000 stimuli.

This limited resolution affects network performance in making pre-
cise estimates, especially in tasks that require estimating lines drawn
at angles or curved lines. As we draw binary stimuli, there are only
so many angles of lines that can be drawn within 100×100 pixels that
produce different visual output. This leads to a performance floor or
constant error. For instance, on average, we can only draw binary
angled lines with 1.45 degrees of accuracy (0.67 standard deviation).

2.2 Elementary Perceptual Tasks
Cleveland and McGill provide an explanatory figure for their defined
elementary perceptual tasks, with each example showing the expected
variation in parameter through two samples. We compare visually
to two samples of our stimuli (Figure 3). Our stimuli are similar
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Fig. 1: Anti-aliasing. We test whether anti-aliasing affects the perfor-
mance of our networks on pie charts by measuring MLAE. Starred
networks are fine-tuned from ImageNet weights. The difference is not
statistically significant (F(1,30) = 0.341, p > 0.5).
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Fig. 2: Noise. We test whether noise affects the performance of our
networks on the Weber-Fechner’s law experiment by measuring MLAE.
Top: With noise, MLAE = 4.511 (SD = 0.512). Bottom: Without
noise MLAE = 4.491 (SD = 0.543). The difference is not statistically
significant (F(1,22) = 0.008, p > 0.5).
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Fig. 3: Left: Cleveland and McGill’s example figure for their elementary perceptual tasks, with each task showing variation through two sample
examples (Figure 1 from [1]). Right: Two example stimuli from our elementary perceptual task experiment. Note that the border around each of
our stimuli only exist in this figure to visually separate the stimuli; no border exists in our experiments. Our stimuli also include minor variations
in style, such as dot and stroke width in position and length. Finally, as per Cleveland and McGill, we defer color saturation as a perceptual
problem for future work. (Though given the success of CNNs in estimating elementary graphical perception task values in comparison to humans,
we would also expect CNNs to be more successful than humans at estimating color saturation.)

in appearance, with the addition that our stimuli also include minor
variations in style such as dot and stroke width in position and length.

One difference is that we exclude the numerical values written as
text along the scale in the ‘Position Common Scale’ and ‘Position Non-
aligned Scales’ examples. While training a CNN to recognize text on
graphs is possible given enough examples [3], in our case these numbers
would not change from stimuli to stimuli and so the network would
not gain any information between stimuli to help solve the position
estimation problem. As such, we simplify the task by removing the
redundant numbers, with the scale values implicitly encoded by the
size of the image and the location of the line start and end pixels.

By the same reasoning, the scale itself is redundant in the ‘Position
Common Scale’ task as it does not move—the network must map the
vertical pixel positions of the dots to the quantity range of numbers.
We keep the scale to allow comparison with the ‘Position Non-aligned
Scale’ task. Further, when we train networks that look at all elementary
perceptual tasks, keeping the scale allows the network to exploit the
consistency of representation across the two position estimation tasks.

Finally, we list the permutations of each stimuli in Table 1.

2.3 Position-length Experiment

Again, we attempted to replicate Cleveland and McGill’s stimuli as
closely as possible, while removing the text on the scale and the A/B
category labels (Figure 4). These values are implicitly encoded by the
vertical height within the image, and by the left/right position of the
bars. Like Cleveland and McGill, we place a dot within the regions
that require ratio estimation. In our case, the network must learn the
association of dot placement to required length estimation.

2.4 Position-angle Experiment

As before, our figures make implicit the scales and labels within these
stimuli (Figure 5). One difference here is that Cleveland and McGill ex-

plicitly tell the participants on a supplemental sheet which pie segment
or bar is largest; we replace this signal with a visual dot.

2.5 Bars/Rectangles Experiment
In this case, the only difference is that we remove the A/B category
labels, and let the comparison judgment be implicitly encoded by the
left/right bars (Figure 6).

2.6 Point Cloud Experiment
Cleveland and McGill have no equivalent to this Weber-Fechner’s law
experiment, and so we show no stimuli comparison.

3 COMPARING THE HUMAN VS. MACHINE
JUDGMENT PROCESSES

There are many general differences in how humans and CNNs perceive:
• Humans have foveal and peripheral vision.
• Humans have explicit attention mechanisms (V1), with neural

feedback to drive attention.
• Humans have working memory.
• Humans can make predictions about what they might see given a

hypothesis.
It can be argued that a CNN can see and integrate all image information
at once, as it has no fovea. This partially overcomes the need for
attention mechanisms, feedback, and working memory.

Having spoken to three computational human vision scientists about
graphical perception, it is our understanding that we still know very
little about how humans see data visualizations beyond the very early
visual system. In some cases, through works like Cleveland and McGill,
we know how well humans can judge elementary graphical perception
tasks, and this is the level at which we make comparisons about the suit-
ability of CNNs as models for human graphical perception—implicitly,
rather than explicitly.
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Fig. 4: Top: Cleveland and McGill’s example stimuli for their position-length experiment (Figure 4 from [1]). Bottom: Example stimuli from our
position-length experiment. Note that the border around each of our stimuli only exist in this figure; no border exists in our experiments.

Fig. 5: Top: Cleveland and McGill’s example stimuli for their position-
angle experiment (Figure 3 from [1]). Right: Example stimuli from
our position-length experiment. Note that the border around each of
our stimuli only exist in this figure; no border exists in our experiments.
Further, we have resized our stimuli on the page to more clearly show
the similarity; each are 100×100 pixels.

Given these limitations, we will try and describe at a high level what
we think happens when a human is asked to predict from the ‘position
common scale’ stimuli, and what happens when a CNN is asked to
predict given the stimuli as input.

3.1 Human Judgment
For training, a human being learns how to see through experience
gained by existing in the world, such as our ability to interpret vi-
sual edges as lines and to read numbers. Given this experience, upon
observing the ‘position common scale’ stimuli at prediction time:

1. The human looks at the scale and reads the demarcation ticks
and text labels. This lets the human know the numerical values
associated with the visual marks and defines the scale bounds.

2. The human looks at the dot and mentally projects a horizontal
line over to intersect the scale.

3. The human estimates the distance between the two closest de-
marcation ticks and the intersection line. The human may make
additional mental ticks within the span to help in the estimation.

Fig. 6: Top: Cleveland and McGill’s example bars and rectangles (Fig-
ure 12 from [1]). Right: Example stimuli from our bars and rectangles
experiment. Note that the border around each of our stimuli only exist
in this figure; no border exists in our experiments.

4. The human converts this into the scale using knowledge of the
tick values, producing a prediction.

The first two steps may be interchanged, as the output of each is stored
in human memory in either case.

3.2 Brief CNN Introduction
For a CNN, the process is harder to describe in intuitive terms, and so
we provide a brief introduction to how CNNs work. The network is
defined to have a set of layers, with each layer feeding into the next, and
each typically performing some subset of three operations: convolution
with kernels, non-linear transformation with activation functions, and
pooling. Following these, a densely-connected set of neurons known as
a multi-layer perceptron (MLP) learns how to combine the convolution
layer outputs to make a prediction.

Trainable Convolution. The network has a number of kernels
within each layer, e.g., in layer one of LeNet, we have 20 trainable 5×5
kernels. We convolve an input image with our kernels to produce a
‘feature map’ measuring the kernel response to the image. Once trained,
these kernels identify important visual elements in a scene, similar to a
template matching process. In a loose biological comparison, kernels in
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Table 1: Elementary Perceptual Tasks. Rasterized visualizations of
our elementary perceptual tasks as defined by Cleveland and McGill [1]
(color saturation excluded). We sequentially increase the number of
parameters for every task (e.g., by adding translation). This introduces
variability and creates increasingly more complex datasets.

Elementary Perceptual Task Permutations

Position Common Scale
Position Y
+ Position X
+ Spot Size

60
3,600

21,600

Position Non-Aligned Scale
Position Y
+ Position X
+ Spot Size

600
36,000

216,000

Length
Length
+ Position Y
+ Position X
+ Width

60
2,400

144,000
864,000

Direction
Angle
+ Position Y
+ Position X

360
21,600

1,296,000

Angle
Angle
+ Position Y
+ Position X

90
5,400

324,000

Area
Radius
+ Position Y
+ Position X

40
800

16,000

Volume
Cube Sidelength
+ Position Y
+ Position X

20
400

8,000

Curvature
Midpoint Curvature
+ Position Y
+ Position X

80
1,600

64,000

Shading
Density
+ Position Y
+ Position X

100
2,000

40,000

early layers are often compared to functions in the early human visual
system that identify contrast or edges, which is an important task within
graphical perception. Through hierarchical combination, kernels in
later layers are said to localize and identify objects (if the network is
trained on natural images) [4]. In our graphical perception setting, this
would potentially let a network identify and compare larger structures
like the cube in our volume task, or glyphs.

Activation Functions. With the feature maps computed by the con-
volution with trained kernels, we apply the activation function, which
defines how much we wish our network to respond to a given feature.
LeNet uses the Rectified Linear Unit (ReLU) activation function, which
sets all values less than 0 to 0, and is loosely said to be biologically
inspired by one-sided human neuron activations. ReLU helps us train
deeper neural networks by propagating large positive signals [2].

Pooling. A pooling layer acts to summarize a response over a
spatial region of the feature map, either by averaging or by selecting
the highest response from the region (‘max. pooling’). LeNet uses 2×2
max pooling, which decreases the size of the feature map by two in
each dimension. Across layers, pooling lets the network accumulate or

select activations as part of its prediction process.
MLP. Finally, after a series of layers (two for LeNet:

Conv→ReLU→MaxPool→Conv→ReLU→MaxPool), we feed the re-
sulting downsampled feature map into a multi-layer perceptron, which
is connected to every pixel in the feature map. Each perceptron in the
MLP is a linear classifier that is trained to weight the feature maps to
produce the correct prediction. The MLP itself has two layers separated
by a ReLU to allow for complex combination.

3.3 CNN Judgment.
Now, let us predict for the ‘position common scale’ task. Through
training, our network has learned a set of convolutional kernels across
its layers that, in combination, help the network to predict estimates for
unseen test data.

1. The kernels produce strong responses in parts of the test image
that were helpful to predict the training data. These are typically
edges or visualization parts such as bars. For ‘position common
scale’, early-layer kernels produce a strong response for dots.

2. Pooling selects the most important features from across the image.
Over a hierarchy of layers, these are trained to be combined by
kernels into more useful features. For ‘position common scale’,
this dot response would be propagated through the layers, but the
exact position of the dot would be made imprecise.

3. The MLP has been trained to weight (or combine) the pooled
feature maps into a prediction. For ‘position common scale’, the
MLP will weight the feature map response at different locations
to map to a value between 0–60.

3.4 Human/CNN Comparison
While parts of this process are similar, such as the early visual system
identifying edges, the high-level picture is that the human and CNN
prediction processes are substantially different. The human prediction
involves implicit geometric understanding of a space, with projection
and line length comparisons. The CNN prediction has no explicit
way to represent these high-level operations; instead, they must be
implicitly represented though a series of low-level weighted sums of
pixel responses, clamping activation function transformations, and
spatially-local max operations.

However, for some perception tasks like area estimation or our
point cloud experiment in the main paper, this series of operations is
beneficial. For instance, estimating the number of points added to the
point cloud can be computed exactly by summing over the stimuli and
subtracting the base number of points (10, 100, 1,000). This is a task
that is extremely tedious at best for a human, but easier for the CNN
given its layer aggregation methodology.

4 SUPPLEMENTAL RESULTS

We present several plots that contain complete results for the elementary
perceptual task experiment, for which, given the number of experiments,
the main paper presented only a selection. We report MLAE for all
added parameters to the stimuli, rather than just the most complex
parameterization as in the main paper (Figures 7 and 8). From this, we
see that performance is largely equal across parameters, showing that
most networks have sufficient capacity for the given parameterizations.

We also report complete results for the cross-network variability
experiment on the elementary perceptual task experiment (Figure 9).
As in the main paper, this shows that our networks are not able to
generalize to additional translation or stroke width parameters without
representative training data.

Further, we show how the errors for each network are distributed,
across elementary perceptual tasks and across different cross-validation
splits (Figure 10). Most errors are approximately normally distributed,
though our CNN with less parameters (LeNet) and our MLP often have
errors that are farther from a normal distribution and show structure.
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Fig. 7: Elementary perceptual tasks. Midmean logistic absolute errors (MLAE) for all generated stimuli and across all networks. The *
indicates networks that use ImageNet weights instead of being trained from scratch.
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Fig. 10: Error distributions. Error distributions of our networks when decoding elementary perceptual tasks.9
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Fig. 11: Loss plots for the position-length experiment. We visualize
the MSE loss on training data and for unseen validation data after each
epoch. There is no significant difference in convergence for either
encoding.
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Fig. 12: Loss plots for the bars-and-framed-rectangles experiment.
We visualize the MSE loss on training data and for unseen validation
data after each epoch. There is no significant difference in convergence
for either encoding.
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Fig. 13: Loss plots for the Weber-Fechner’s law experiment. We visualize the MSE loss on training data (left) and for unseen validation data
(right) after each epoch (a) without noise and (b) with subtle 5% noise per pixel. There is no significant difference when noise is added. The
LeNet network seems to overfit with Weber Base 100 in both cases even with dropout regularization.
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Fig. 14: Loss plots for the Weber-Fechner’s law experiment includ-
ing VGG19 and Xception. We visualize the MSE loss on training data
and for unseen validation data after each epoch. This plot includes the
VGG19 and Xception networks trained from scratch.
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(a) VGG19 *, Block 3 (Conv. Layers 2+3)

(b) VGG19 *, Block 4 (Conv. Layers 2+3)

(c) VGG19 *, Block 5 (Conv. Layers 2+3)

(d) VGG19, Block 3 (Conv. Layers 2+3)

(e) VGG19, Block 4 (Conv. Layers 2+3)

(f) VGG19, Block 5 (Conv. Layers 2+3)

Fig. 15: Convolutional Activation Maps for a Pie Chart. (a)-(c) is VGG19 *, trained on ImageNet. The activation maps do not differ much,
which is surprising since VGG19 trained from scratch performs so much better in our experiments.
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(a) VGG19 *, Block 3 (Conv. Layers 2+3)

(b) VGG19 *, Block 4 (Conv. Layers 2+3)

(c) VGG19 *, Block 5 (Conv. Layers 2+3)

(d) VGG19, Block 3 (Conv. Layers 2+3)

(e) VGG19, Block 4 (Conv. Layers 2+3)

(f) VGG19, Block 5 (Conv. Layers 2+3)

Fig. 16: Convolutional Activation Maps for a Curvature stimuli. (a)-(c) is VGG19 *, trained on ImageNet. The activation maps do not differ
much, which is surprising since VGG19 trained from scratch performs so much better in our experiments.
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Fig. 17: Bars and Framed Rectangles experiment (E4): User responses. The responses show that users were able to precisely measure
differences with the framed rectangles stimuli. For bars, the estimations were often guessed as 10 (N = 55).
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Fig. 18: Weber’s law point cloud experiment (E5): User responses. The human results for 10, 100, 1,000 points exhibit skewed distributions.
At 1,000 points, this task is virtually impossible, and so humans resort to simply guessing. However, they seem to ‘guess high’, leading to worse
than random performance on the task.
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Table 2: Mean squared error (MSE) for the elementary perceptual tasks experiment (E1), to accompany the midmean logistic absolute error
metric (MLAE) measures in the main paper.

MLP LeNet VGG19 * VGG19 Xception * Xception

Position Common Scale 0.03794±0.01436 0.00106±0.00028 0.00079±0.00027 0.00014±0.00009 0.00170±0.00036 0.00074±0.00034
Position Non-aligned Scale 0.02974±0.00912 0.00097±0.00043 0.00081±0.00016 0.00021±0.00013 0.00183±0.00047 0.00060±0.00006
Length 0.00267±0.00053 0.01044±0.00301 0.00046±0.00050 0.00010±0.00002 0.00142±0.00021 0.00066±0.00010
Direction 0.08359±0.00645 0.01409±0.00575 0.01014±0.00212 0.00121±0.00090 0.02342±0.00556 0.00247±0.00159
Angle 0.08092±0.00953 0.01859±0.00611 0.00415±0.00087 0.00053±0.00006 0.00607±0.00064 0.00158±0.00019
Area 0.00256±0.00074 0.00383±0.00171 0.00031±0.00016 0.00010±0.00004 0.00047±0.00013 0.13955±0.22880
Volume 0.00593±0.00382 0.00405±0.00567 0.00100±0.00067 0.00084±0.00065 0.00339±0.00218 0.00346±0.00050
Curvature 0.00343±0.00076 0.00065±0.00015 0.00024±0.00003 0.00006±0.00001 0.00047±0.00010 0.00254±0.00108
Shading 0.01861±0.00811 0.00448±0.00205 0.00078±0.00067 0.00032±0.00021 0.00303±0.00138 0.00657±0.00473

Table 3: Mean squared error (MSE) for the position-angle experiment (E2), to accompany the midmean logistic absolute error metric (MLAE)
measures in the main paper

MLP LeNet VGG19 * VGG19 Xception * Xception

Pie Chart 0.04725±0.00177 0.02429±0.00070 0.02492±0.00143 0.00095±0.00018 0.01371±0.00078 0.00260±0.00037
Bar Chart 0.00629±0.00051 0.00322±0.00029 0.00723±0.00107 0.00076±0.00012 0.00465±0.00020 0.00109±0.0001

Table 4: Mean squared error (MSE) for the position-length experiment (E3), to accompany the midmean logistic absolute error metric (MLAE)
measures in the main paper.

MLP LeNet VGG19 * VGG19 Xception * Xception

Type 1 0.03561±0.01403 0.13262±0.07927 0.04563±0.02225 0.04259±0.01621 0.07448±0.04100 0.10515±0.04370
Type 2 0.04270±0.04115 0.07342±0.04200 0.12256±0.06932 0.03976±0.02488 0.04624±0.02606 0.08235±0.02587
Type 3 0.06055±0.02853 0.04998±0.08381 0.09711±0.04050 0.02746±0.01733 0.03701±0.01777 0.08443±0.04828
Type 4 0.07275±0.03090 0.05433±0.04709 0.03922±0.02143 0.03065±0.02038 0.05543±0.06636 0.06119±0.06254
Type 5 0.06728±0.02543 0.03583±0.02154 0.12193±0.05223 0.04314±0.03622 0.04574±0.01683 0.07167±0.02072
Multi 0.02624±0.01729 0.04419±0.02724 0.07631±0.02532 0.01756±0.00931 0.03850±0.02710 0.08365±0.02061

Table 5: Mean squared error (MSE) for the bars and framed rectangles experiment (E4), to accompany the midmean logistic absolute error metric
(MLAE) measures in the main paper

MLP LeNet VGG19 * VGG19 Xception * Xception

Framed Rectangles 0.00065±0.00012 0.01343±0.00484 0.00156±0.00029 0.00032±0.00011 0.00437±0.00069 0.00155±0.00062
Bars 0.00060±0.00012 0.00553±0.00196 0.00173±0.00037 0.00043±0.00024 0.00531±0.00073 0.00145±0.00053

Table 6: Mean squared error (MSE) for the Weber’s law point cloud experiment (E5), to accompany the midmean logistic absolute error metric
(MLAE) measures in the main paper.

MLP LeNet VGG19 * VGG19 Xception * Xception

10 points 0.10126±0.00062 0.13759±0.03183 0.09031±0.00130 0.00899±0.00150 0.09354±0.00078 0.06830±0.00207
100 points 0.10250±0.00057 0.10259±0.00065 0.10202±0.00038 0.09835±0.00267 0.10174±0.00034 0.10818±0.01003
1,000 points 0.09946±0.00095 0.03436±0.01137 0.01477±0.00059 0.00076±0.00008 0.02610±0.00026 0.01041±0.00258
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