WebGL-based Image Processing through JavaScript Injection

Tim Meyer
Universitit der Bundeswehr Miinchen
Neubiberg, Germany
tim.meyer@unibw.de

@ O O 0OpenNEURO - Food and Brain study H

Gabi Dreo Rodosek
Universitit der Bundeswehr Miinchen
Neubiberg, Germany
gabi.dreo@unibw.de

IMAGE PROCESSOR

Daniel Haehn
University of Massachusetts Boston
Boston, USA
daniel. haehn@umb.edu

Figure 1: We hijack the WebGL context of any external website to perform GPU-accelerated image processing through JavaScript
injection. This allows client-side modification of the rendered scene without access to the web server. Examples here show
pixel-based color highlighting, full visual replacement (smiley), and region of interest selected processing. Further examples, a
demo video and code can be accessed at: https://meyerstim.github.io/WebGL-Image-Processor/

ABSTRACT

Can we modify existing web-based computer graphics content
through JavaScript injection? We study how to hijack the WebGL
context of any external website to perform GPU-accelerated image
processing and scene modification. This allows client-side modifi-
cation of 2D and 3D content without access to the web server. We
demonstrate how JavaScript can overload an existing WebGL con-
text and present examples such as color replacement, edge detection,
image filtering, and complete visual transformations of external
websites, as well as vertex and geometry processing and manipu-
lation. We discuss the potential of such an approach and present
open-source software for real-time processing using a bookmarklet
implementation.

CCS CONCEPTS

« Computing methodologies — Image processing; « Security
and privacy — Browser security.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WEB3D 24, September 25-27, 2024, Guimaraes, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0689-9/24/09

https://doi.org/10.1145/3665318.3677163

KEYWORDS

WebGL, WebGL2, web-based, Image Processing, Vertex Processing,
JavaScript Injection

ACM Reference Format:

Tim Meyer, Gabi Dreo Rodosek, and Daniel Haehn. 2024. WebGL-based
Image Processing through JavaScript Injection. In The 29th International
ACM Conference on 3D Web Technology (WEB3D ’24), September 25-27, 2024,
Guimardaes, Portugal. ACM, New York, NY, USA, 5 pages. https://doi.org/10.
1145/3665318.3677163

1 INTRODUCTION

WebGL [Jackson and Gilbert 2017], a JavaScript Application Pro-
gramming Interface (API) for rendering interactive 3D graphics
within any compatible web browser has revolutionized web-based
graphics for visualization and compute. Every WebGL application
uses this API to create a context that allows access to OpenGL-style
buffers to render and process content. Typically a web-server hosts
HTML and JavaScript code for interactive enduser consumption in
the client/web-browser.

Our framework, however, introduces an approach by hijacking
the WebGL context of such existing external website: we can inter-
cept WebGL commands issued by any web application and modify
the rendering output in real-time. We inject JavaScript into the
target webpage to capture the WebGL context and redirect the
rendering output to off-screen buffers for generic processing. By
reading out the framebuffers and temporarily storing them in a
texture, we can apply various image processing algorithms before


https://orcid.org/0009-0006-8700-4582
https://orcid.org/0000-0002-8702-8553
https://orcid.org/0000-0001-9144-3461
https://meyerstim.github.io/WebGL-Image-Processor/
https://doi.org/10.1145/3665318.3677163
https://doi.org/10.1145/3665318.3677163
https://doi.org/10.1145/3665318.3677163

WEB3D 24, September 25-27, 2024, Guimaraes, Portugal

drawing the results back onto the original scene to be visible to the
user.

By leveraging this technique, we can achieve real-time and GPU-
accelerated image processing and scene modification of the web-
site’s content even without access to the original code. Scene modi-
fication also includes the manipulation, transformation and mod-
ification of vertex objects in the scene. These are the objects and
geometries from which the respective content is constructed. In a
further step, these objects are then processed and colored by the
fragment shader. At this stage, the manipulation allows the objects
to be scaled in the X and Y directions, so the size of these elements
can be changed in real time, again without having access to the
original data or rendering pipeline Our framework is open-source
and available for further development and customization, provid-
ing a powerful tool for developers and researchers to explore the
capabilities of WebGL for real-time image processing within the
browser environment.

2 RELATED WORK

WebGL is a JavaScript API that allows for rendering interactive
2D and 3D graphics within any compatible web browser without
the need for plug-ins. It leverages the power of the GPU to exe-
cute code directly on the hardware, enabling high-performance
graphics rendering. WebGL operates through the HTML5 canvas
element, providing a programmable environment for rendering
shapes, images, and complicated 3D scenes [Ghayour and Cantor
2018] and many abstraction libraries exist to simplify development
(Three.js [Three.js 2024], Babylon.js [Catuhe and Babylon.js 2024],
XTK [Haehn et al. 2014], Niivue [Niivue 2021]).

Besides pure visualization, WebGL is also used in various ways
to perform image processing and GPU computations directly within
the browser. For example, TensorFlow.js [Smilkov et al. 2019] and
ONNX js [Microsoft Corporation 2024] enable developers to exe-
cute machine learning models and perform GPU-accelerated com-
putations directly in the browser using WebGL bindings. A note-
worthy end-user application in the medical imaging domain is
Brainchop.org [Masoud et al. 2023] that allows the real-time seg-
mentation of Magnetic resonance imaging (MRI) and computed
tomography (CT) scans within a self-contained environment.

However, our framework can dynamically expand such func-
tionalities by modifying the rendering output of any WebGL-based
application without any server-side access. This allows client-side
image processing and modification of existing scenes.

Most similar to our work is Spector.js [Spector.js 2017], a debug-
ging and profiling tool designed for WebGL developers. This tool
allows capturing and analyzing WebGL commands to aid in code op-
timization and debugging. Unlike other tools, Spector.js can interact
with existing WebGL contexts by injecting itself into the rendering
pipeline. However, its primary focus is WebGL development, and it
does not modify the rendered WebGL content.

3 CONCEPT

Our framework can intercept and manipulate WebGL draw calls
on external websites. By injecting JavaScript code into a browser
session, we gain access to the WebGL context. We can then redi-
rect the rendering output by reading the original framebuffers and

Tim Meyer, Gabi Dreo Rodosek, and Daniel Haehn

re-writing their content to off-screen buffers or textures for pro-
cessing. This allows for real-time image modifications, such as
applying fragment shaders to alter colors, perform edge detection,
or enhance visuals with various other processing algorithms. The
processed content is then rendered back onto the canvas, making
the modifications visible to the user without changing the original
website.

In addition, we can also manipulate the vertex data and objects,
i.e. the structures, arrays and values that construct the scene. These
can also be changed and manipulated. Among other things, this
enables scaling and other transformations in the scene.

3.1 Framework Overview

The framework consists of several components designed to interact
seamlessly with the WebGL rendering pipeline. The process begins
with JavaScript injection into a web page, which sets the stage
for capturing and manipulating WebGL contexts. This multi-stage
processing can also be seen in Figure 2 and is carried out as follows:

L. H
/]\

Image Processing
Fragment shader

Framebuffer| I \l/

N2 ===

"
I
i

-

Figure 2: Processing pipeline to hijack and manipulate ex-
isting WebGL context on an external website to perform
client-side image processing and update contents in real-
time without web server access.

m
(c’,
(@)

()

(1) JavaScript Injection: This step involves dynamically inserting
JavaScript code into web pages using a browser bookmarklet
(wrapped JavaScript code). This injected code enables the
capture and manipulation of WebGL contexts.

(2) WebGL Context Wrapper / Context hijacking: The injected

code is essential for hijacking and manipulating WebGL con-
texts. This process involves wrapping WebGL functions to
monitor and alter their execution. We intercept methods
such as drawElements by creating a class that encapsulates
WebGL functionality. This allows us to capture and redi-
rect WebGL commands, giving us control over the rendering
process.
The wrapper replaces the original WebGL functions with
custom ones that include additional logic. For example, when
the drawElements function is called, our wrapper function
is executed instead. This wrapper function can log the call,
modify its parameters, or completely override its behavior.
Doing so allows manipulation of the rendering output by
interception before the GPU processes it.



WebGL-based Image Processing through JavaScript Injection

(3) Framebuffer Extraction and Texture Mapping: Framebuffer
extraction and texture mapping are crucial steps for isolat-
ing and preparing rendering content for further processing.
Before the content is rendered to the visible canvas, the
framebuffer content is captured and copied into a texture.
This involves extracting the framebuffer data used in the
WebGL pipeline and mapping it to a texture for intermediate
storage.

The process begins by creating and binding a framebuffer

object to the current WebGL context. Once bound, the frame-

buffer data, which includes the rendered scene, is copied into

a texture. This step isolates the rendering content from the

original webpage and stores it in a format ready for further

manipulation. By storing the framebuffer data in a texture,
we ensure that it is available for subsequent operations with-
out interfering with the ongoing rendering pipeline.

(4) Image Processing with Fragment Shaders: Utilizing the cap-
tured texture as input, various image processing algorithms
can be executed using fragment shaders. These shaders are
small WebGL programs that run on the GPU and process
individual pixels, enabling real-time, parallelized image ma-
nipulations. Fragment shaders can perform tasks such as
dynamic highlighting, edge detection, color correction, and
more. Examples of image processing tasks include full pro-
cessing, region of interest selection, and content overwriting,
as seen in Figure 1.

e Full processing: Complete Canvas / WebGL content is
processed. Different shaders can be used to achieve various
processing results.

e Region of Interest Selection: Processes only a specified
part of the canvas, focusing computational resources on
areas of interest.

e Content Override: Replaces the original content on the
canvas with the processed output, such as rendering a
smiley face onto the canvas.

(5) Rendering Processed Data: After processing, the original ge-

ometry is used to render the processed texture back onto the
browser’s canvas. This step involves re-executing the WebGL
commands with the modified fragment shader, ensuring the
processed content is drawn onto the original drawing area.
This displays the modified image to the user.
The processed texture is then rendered back onto the original
canvas using the original geometry, ensuring the modifica-
tions are visible. This step involves rendering the processed
data onto the canvas, replacing the original content with the
modified version. Doing so does not interrupt the original
interaction methods or animation frames.

Our framework supports real-time updates by continuously mon-
itoring interactions with the canvas. The entire WebGL rendering
pipeline is re-executed whenever there is user interaction, such as
modifying the camera.

With JavaScript injection and by using the WebGL API and by-
passing any potential abstraction framework, this approach works
independent of any chosen client-side or server-side software stack
and across different websites and applications.

WEB3D °24, September 25-27, 2024, Guimaraes, Portugal

3.2 Image Processing with Fragment Shaders

Fragment shaders play a crucial role in the WebGL Image Processor
framework by enabling pixel-wise processing of images directly
on the GPU. This allows for highly efficient and parallelized image
manipulations, essential for real-time applications. A fragment
shader is a small program executed on the GPU for each pixel,
allowing various image processing algorithms to be applied.

When a texture containing the image data is passed to a fragment
shader, the shader processes each pixel individually. The processing
can involve color adjustments, edge detection, dynamic highlight-
ing, and more. By leveraging the GPU’s parallel processing power,
fragment shaders can efficiently handle large image data and per-
form complex real-time calculations.

More complex shaders can implement sophisticated algorithms
for various image processing applications, enabling a generic real-
time image processing and scene manipulation tool.

3.3 Vertex Transformation

We can also manipulate and change geometries using a vertex
shader. Our experiments include the translation and scaling in X-
and Y-direction but any type of processing is generally possible.
This can be combined with the image processing using fragment
shaders.

4 VISUAL EXAMPLES

The visual examples in this paper demonstrate various image pro-
cessing techniques applied to external websites. Each example
demonstrates the framework’s capability to hijack WebGL contexts
using JavaScript injection and perform real-time image manipula-
tions. Examples include dynamic highlighting, region of interest
selection, and content overwriting.

Once installed, our proof-of-concept bookmarklet allows the
user to select different processing shaders using a combobox when
visiting an external WebGL-driven website. The user can enable
or disable processing with the INSERT button. Figure 3 shows this
user interface injected in OpenNeuro.org and the application of
Sobel Edge detection. Figure 1 demonstrates Dynamic Highlighting
to color thresholded pixels within a selected region-of-interest.

Figure 3: Sobel Edge detection filter applied to a sample
dataset on the external OpenNeuro.org website that uses
the WebGL-abstraction layer NiiVue.js without access to the
server infrastructure or data.!



WEB3D 24, September 25-27, 2024, Guimaraes, Portugal

Color Inverter Laplace Edge Detection
Figure 4: Fragment shaders for sample image processing (Color
inverter and Edge detection algorithm) applied to existing WebGL
context, without access to the server infrastructure or data, on the
same external website as with Figure 3.

Additional injected processing functionality is shown in Figure
4: the Color Inverter exchanges the RGB values for each pixel, and
the Laplace Edge Detection.

And Figure 5 displays a grayscale to RGB conversion on a differ-
ent external website.

Figure 5: Pseudocolor filter to convert grayscale images to
RGB-like images, applied on an existing WebGL context,
without access to the server infrastructure or data, on a ex-
ternal website.?

Finally, Figure 6 shows the the transformation and scaling of the
vertex data. There can be see a reduction of the vertex data in the
Y direction by a factor of 0.5, i.e. its size is reduced by half. At the
same time, a fragment shader is also used to apply the SOBEL edge
detection algorithm. Both of the manipulations will be reapplied to
the content in real-time each time any interaction or change occurs
in the scene. As soon as the WebGL context is self-updating with
a certain framerate, scaling and processing will be performed for
each of these frames.

Further sample images of vertex manipulation and processing
algorithms as well as a demo video showing the real-time perfor-
mance can be found on our website.

5 LIMITATIONS AND FUTURE WORK

Hijacking WebGL contexts for real-time image processing can be
slow or lead to the loss of WebGL context, especially on embedded
systems with less memory. This is a significant issue for dynamic

!External ~website: https://openneuro.org/datasets/ds004697/versions/1.0.1/file-
display/sub-003:ses-1:anat:sub-003_ses-1_T1w.nii.gz

2External website: https://brainchop.org/

3External website: https://threejs.org/examples/webgl_framebuffer_texture.html

Tim Meyer, Gabi Dreo Rodosek, and Daniel Haehn

three.js framebuffer to texture

Figure 6: Splitscreen of original (left) and processed (right)
WebGL content. Vertex manipulation of existing WebGL Ob-
jects to scale and transform in Y-Direction by the factor of
0.5. Additionally application of the SOBEL Edge detection
filter. Everything is performed on an existing, interactive 3D
‘WebGL context, without access to the server infrastructure
or data, on a external website.

content, where frames update multiple times per second, requiring
frequent processing.

In addition to the aspect that the basic possibility of manipulating
and changing the vertex elements has been shown by means of
object scaling, there is of course further potential here to carry out
more complex processing on the elements and geometries, based
on the existing processes and results.

We also plan to explore potential security risks associated with
dynamic content manipulation, especially in connection with We-
bGL’s sandboxed GPU-access.

6 CONCLUSION

We demonstrate the capability to hijack external websites’ WebGL
context and dynamically interact with it through JavaScript injec-
tion. This approach allows for modifying the rendering output in
real-time, enabling various image processing tasks such as pixel-
wise color modification, edge detection, or full frame replacement
directly within the client’s browser. It also allows you to manipulate,
transform and change the vertex and geometry objects from which
the scene is constructed. We tested scaling and other transforma-
tions by injecting an additional vertex shader.

REFERENCES

David Catuhe and Babylon.js. 2024. Babylon.js: a powerful, beautiful, simple, and open
game and rendering engine packed into a friendly JavaScript framework. https:
//www.babylonjs.com/

Farhad Ghayour and Diego Cantor. 2018. Real-Time 3D Graphics with WebGL 2: Build
interactive 3D applications with JavaScript and WebGL 2 (OpenGL ES 3.0), 2nd Edition.
Packt Publishing.


https://www.babylonjs.com/
https://www.babylonjs.com/

WebGL-based Image Processing through JavaScript Injection

Daniel Haehn, Nicolas Rannou, Banu Ahtam, Ellen Grant, and Rudolph Pienaar. 2014.
Neuroimaging in the Browser using the X Toolkit. Frontiers in Neuroinformatics 8
(2014). https://doi.org/10.3389/conf.fninf.2014.08.00101

Dean Jackson and Jeff Gilbert. 2017. WebGL 2 Specification. https://registry.khronos.
org/webgl/specs/2.0.0/ retrived on 2024-05-29.

Mohamed Masoud, Pratyush Reddy, Farfalla Hu, and Sergey Plis. 2023. Brainchop:
Next Generation Web-Based Neuroimaging Application. arXiv:2310.16162

Microsoft Corporation. 2024. ONNX.js: run ONNX models using JavaScript. https:
//github.com/microsoft/onnxjs

Niivue. 2021. Niivue: a WebGL2 based medical image viewer. Supports over 30 formats of
volumes and meshes. https://github.com/niivue/niivue

Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann Yuan, Nick Kreeger, Ping Yu,
Kangyi Zhang, Shanqing Cai, Eric Nielsen, David Soergel, Stan Bileschi, Michael
Terry, Charles Nicholson, Sandeep N. Gupta, Sarah Sirajuddin, D. Sculley, Rajat
Monga, Greg Corrado, Fernanda B. Viégas, and Martin Wattenberg. 2019. Tensor-
Flow.js: Machine Learning for the Web and Beyond. https://arxiv.org/abs/1901.
05350

Spector.js. 2017. Spector.js: Explore and Troubleshoot your WebGL scenes with ease.
https://github.com/Babylon]S/Spector.js

Three.js. 2024. Three.js: JavaScript 3D Library. https://threejs.org/

Received 16 June 2024; revised XXX; accepted XXX

WEB3D °24, September 25-27, 2024, Guimaraes, Portugal


https://doi.org/10.3389/conf.fninf.2014.08.00101
https://registry.khronos.org/webgl/specs/2.0.0/
https://registry.khronos.org/webgl/specs/2.0.0/
https://arxiv.org/abs/2310.16162
https://github.com/microsoft/onnxjs
https://github.com/microsoft/onnxjs
https://github.com/niivue/niivue
https://arxiv.org/abs/1901.05350
https://arxiv.org/abs/1901.05350
https://github.com/BabylonJS/Spector.js
https://threejs.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Concept
	3.1 Framework Overview
	3.2 Image Processing with Fragment Shaders
	3.3 Vertex Transformation

	4 Visual Examples
	5 Limitations and Future Work
	6 Conclusion
	References

